Pages

জানার আছে অনেক কিছু-ত্রিভুজ(TRIANGLE)

ত্রিভুজ নিয়ে কিছু কথাঃ
================
ত্রিভুজ হল সমতলের উপর অঙ্কিত একটি চিত্র যা তিনটি সরলরেখা দ্বারা সীমাবদ্ধ।

ত্রিভুজের শ্রেণীবিভাগঃ-

★যদি ত্রিভুজের তিনটি বাহুই অসম হয়, তবে একে বিষমবাহু ত্রিভুজ বলে।
★আর কেবল দুই বাহু সমান হলে তাকে সমদ্বিবাহু ত্রিভুজ এবং সমদ্বিবাহু ত্রিভুজে সমান বাহুদ্বয়ের বিপরীত কোণগুলি সমান।
★তিনটি বাহুই সমান হলে তাকে সমবাহু ত্রিভুজ বলা হয়। সমবাহু ত্রিভুজের সবগুলি কোণ সমান।
★যে ত্রিভুজের একটি কোন সমকোণ তাকে সমকোণী ত্রিভুজ বলে।

 সমকোণী ত্রিভুজের সমকোণের বিপরীত বাহুর নাম অতিভুজ। 
পিথাগোরাসের বিখ্যাত উপপাদ্য অনুযায়ী সমকোণীত্রিভুজের অতিভুজের বর্গ এর সমকোণ-সংলগ্ন দুই বাহুর বর্গের যোগফলের সমান। অর্থাৎ c^2=a^2+b^2

ত্রিভুজের ভিতরের কোনগুলিকে অন্তঃস্থ কোণ বলে, আর ত্রিভুজের বাহুগুলিকে বাড়িয়ে দিয়ে যে কোণগুলি পাওয়া যায়, তাদেরকে হলে বহিঃস্থ কোণ। ত্রিভুজের তিনটি অন্তঃস্থ কোণের সমষ্টি ১৮০°। এছাড়াও, যেকোন বহিঃস্থ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান।

ত্রিভুজের কোন শীর্ষবিন্দু থেকে বিপরীত বাহুর মধ্যবিন্দু পর্যন্ত আঁকা রেখাকে বলা হয় ত্রিভুজটির একটি মধ্যমা। ত্রিভুজের তিনটি মধ্যমা একই বিন্দুতে ছেদ করে এবং এটি প্রতিটি মধ্যমার শীর্ষবিন্দু থেকে দুই-তৃতীয়াংশ দূরত্বে অবস্থিত। ত্রিভুজের কোন শীর্ষবিন্দু থেকে বিপরীত বাহুর উপর অঙ্কিত লম্বকে ঐ ত্রিভুজের উচ্চতা বলে।

দুইটি ত্রিভুজকে সর্বসম বলা হয় যদি এগুলি নিচের তিনটি শর্তের সেটের যেকোনটি পূরণ করে: 


  • (১) একটি ত্রিভুজের এক বাহু ও দুইটি কোণ অন্যটির অনুরূপ বাহু ও দুইটি কোনণর সমান;
  • (২) কোন একটি ত্রিভুজের দুই বাহু এবং এদের অন্তর্ভুক্ত কোণ অন্য ত্রিভুজটির দুই বাহু ও অন্তর্ভুক্ত কোণের সমান;
  • (৩) একটি ত্রিভুজের তিনটি বাহু অপর ত্রিভুজের তিন বাহুর সমান।


যদি একই সমতলে অবস্থিত দুইটি ত্রিভুজকে নিখুঁতভাবে একটির উপর আরেকটিকে বসিয়ে দেয়া যায়, তবে তারা সরাসরি সর্বসম। আর যদি বসানোর আগে একটিকে উল্টে নিতে হয়, তবে ত্রিভুজ দুটি বিপরীতভাবে সর্বসম
যদি দুইটি ত্রিভুজের একটির সবগুলি কোণ অন্যটির সবগুলি কোণের সমান হয়, তবে তাদেরকে সদৃশ ত্রিভুজ বলা হয় এবং এদের অনুরূপ বাহুগুলি সমানুপাতিক হয়।

ত্রিভুজের ক্ষেত্রফলঃ-


ত্রিভুজের ক্ষেত্রফল এর ভূমি (b) ও এই ভূমির উপর অঙ্কিত উচ্চতার (h) গুণফলের অর্ধেক । যেকোন বাহুকেই ভূমি ধরা যায়। যদি ত্রিভুজটি সমবাহু হয়, তবে এর ক্ষেত্রফল , যেখানে a যেকোন বাহুর দৈর্ঘ্য। 
যদি কোন ত্রিভুজের তিনটি বাহু a, b এবং c হয়, তবে গ্রিক গণিতবিদ আর্কিমিডিসের দেয়া সূত্র অনুযায়ী এর ক্ষেত্রফল,S=\sqrt{s(s-a)(s-b)(s-c)},যেখানে;sত্রিভুজের পরিসীমার অর্ধেক s = ½ (a + b + c)।

Thanks For Reading
Hope You Find It Much Informative.
Share with Others & Let Them Know!
Myin Uddin


No comments

Theme images by sololos. Powered by Blogger.